

- Reduce turbulence
- Deter predators
- Reproductive efficiency

sea stars

cucumbers

soft coral

• giant clams

sea squirts

kelp

How Do They Stick?

Mussel Adhesive Proteins

Mefp-1	(Ala-Lys-Pro-Se	r-Tyr-Hyp-Hyp-	-Thr- <u>DOPA</u> -Lys) ₇₅
--------	-----------------	----------------	---------------------------------------

(Cys-Val-Gly-Gly-DOPA-Ser-Gly-Pro-Thr-Cys-Gln-Glu-Asn-Ala-Cys-Lys-Pro-Asn-Pro-Cys)₁₁ Mefp-2

Mefp-3 Rich in Arg, Asn, DOPA, Gly, Hyr, Trp

Mefp-4 Rich in Arg, DOPA, Gly, His

Mefp-5 Rich in Gly, DOPA, Lys, Ser

Rich in Asx, Cys, DOPA, Gly, Lys, Tyr Mefp-6

$$H_2N$$
 H_2N
 H_2N

Hyp: Hydroxyproline

 H_3N^+ COO **DOPA**

Barnacles: No DOPA, but Cys thiols (0.6 - 7.8%)

-Work of Herb Waite, also David Kaplan, Dan Rittschof, Kei Kamino

Proposed Mechanism of Mussel Adhesion

• Data from animal, protein, peptide, surface chemistry studies

Oyster Reefs and Adhesion

- Oyster reefs provide a major influence on coastal ecosystems
- Reefs filter water, prevent erosion, protect from storms, give habitat
- 98% of US reefs are gone
- What is the nature of oyster cement?

Adult Cement: 13C Solid State NMR Spectrometry

With Keith Fritzching and Klaus Schmidt-Rohr at Brandeis U.

- several samples:
 - isolated cement powder
 - shell powder
 - acid etched cement film
- several NMR techniques

Can observe proteins in cement.

Cement Protein Insights from SS NMR

	oyster cement	spider silk
alanine glycine serine	33 ± 10% 12 ± 3% 13 ± 4%	3-43% 3-39% 4-36% 1-7%
phenylalanine/ tyrosine	12 ± 4%	1-170

- Cement proteins have unusual amino acid composition.
- Looks somewhat similar to spider silk, but not the same.
- Have seen fibers in larval adhesive.
- Silk-like proteins seen in barnacle cement.1
- With Keith Fritzching and Klaus Schmidt-Rohr at Brandeis U.

¹ So, Fears, Leary, Scancella, Wang, Liu, Orihuela, Rittschof, Spillman, Wahl, Sci. Reports, 2016, 6, 35219

Why Do We Care About This Technology?

Why Do We Care About This Technology?

Why Do We Care About This Technology?

complex protein

Polymer Mimics of Mussel Adhesive Proteins

$$\xi = \begin{bmatrix} NH - CH - C \\ - C \\ - C \\ - C \end{bmatrix}_{\boldsymbol{X}} \begin{bmatrix} NH - CH - C \\ - C \\ - C \\ - C \end{bmatrix}_{\boldsymbol{Y}} \xi$$

- Deming Lab
- Macromol., 1998, 31, p. 4739

- Biomacromol., 2002, 3, p. 397

- Stewart Lab
- ACS Appl. Mat. & Interfaces 2011, 3, p. 941
- Our Lab
- Macromol., 2007, 40, p. 3960

Jiang- Polyacrylates

Lee- Polycaprolactones

H. Lee- Polydopamine

Zurcher- Polypeptides

Patton- Thiol-enes

Washburn- Polyacrylates

Sedo- Polydopamine

Liu- Polypeptides

Dhinojwala/Joy- Sebacic acid

Kamperman-Polyacrylates

Kuroda- Polyacrylates

Chung- Polyacrylates

B. Lee- PEG

X. Wan- Polyvinylacetates

Coatings

Drug delivery

Biosynthesis (e.g., melanin)

Adhesives

- Nanoparticle coatings
 Non-fouling surfaces

Hydrogels

- Tissue engineering
- Membranes

- Surface couplings
 Sensors

Surface catalysis

Polystyrenes

DOPA simplified:

polystyrene:

$$\xi$$
 CH-CH₂ ξ

-similar structure -easy synthesis -no adhesion

target random copolymers:

Metals, plastics, and woods

Polymer Composition and Adhesion

Adhesive Strengths on Etched Aluminum

Gorilla Glue, urethane $3.3 (\pm 0.8)$ MPa

Elmer's white PVA glue: $3.8 (\pm 0.6) \text{ MPa}$

Super Glue, cyanoacrylate 5.0 (\pm 0.7) MPa

Epoxy glue, Loctite Quick Set 18 (\pm 2) MPa

Our biomimetic copolymers: $11.0 (\pm 0.5)$ MPa

Underwater Adhesion Testing

Flexibility of Adhesive Polymers

72% PEG

- PEG reduces polymer modulus
- Implications for bonding soft versus hard tissues

Adhesives from Renewable Resources

- Current high strength adhesives are all made from petroleum
- Toxic formaldehyde is in 4 of 9 billion kg of glues/year (e.g., wood)
- Permanent nature of glues prevents recycling of cars, furniture, electronics
- Combine polylactic acid and mussel adhesion
- The resulting materials may be sustainable, degradable, and biocompatible
- Entry into removable adhesives

Debonding

- Polyesters can hydrolyze
- Bond dry
- Submerge under water
- Monitor adhesion kinetics

- Adhesives can be debonded
- Debonding times can be <10 days or >3 months

Photo: uwimages/Fotolia

Biomedical adhesive needs:

Sets wet

Strong bonding

Non-toxic

Conclusions

- Mussels: Iron → protein radicals → cross-linking and adhesion
- Oyster cement has a unique composition and structure
- Oyster cement is a cross-linked organic + CaCO₃ hybrid material
- Organics make interfacial contacts
- Similarities to spider silk proteins
- Developing new biomimetic, cross-linking polymers
- Strong adhesion achieved, comparable to "super glues"
- High strength underwater adhesion found
- Making adhesives from renewable resources and degradable
- Future: Biomedical materials

Acknowledgments

Uma Haryal & Victoria Hedrick, Purdue Janie Bryan & Julie Liu, Purdue Tara Essock-Burns & Dan Rittschof, Duke Keith Fritzching & Klaus Schmidt-Rohr, **Brandeis**

Christa Crain & Robyn McCain, Purdue Neeraj Gohad & Andy Mount, Clemson Eric Holm, NSWC Carderock

Chia Ping Huang, Chris Gilpin & Debby Sherman, Purdue

Paul Kenny, Baruch Marine Lab, S. Carolina

Office of Naval Research

Defense Advanced Research Axel Rosenhahn, Bochum U, Germany Projects Agency

Gert Breur & Craig Georgen, Purdue Chuan Leng, Yuwei Liu & Zhan Chen, U of Michigan

Emily Ralston & Geoff Swain, FIT Rebecca Rist & Rebecca Metzler, Colgate U

Gudrun Schmidt, Purdue Karen Sider, VIMS

Erik Soderblum & Arthur Moseley, Duke John Supan, LSU